
Why do CS people
drone on about Unix?

Dr Ian Batten

I.G.Batten@bham.ac.uk

Welcome to CS
• I’m a new lecturer; after 20-odd

years in industry I came back to
do a PhD in my late forties and
stayed as a lecturer.

• I worked here in the 1980s after
doing my degree and some of the
computing decisions I made have
lingered

• The evil that men do lives after
them; the good is oft interred
with their bones.

• I hope you will enjoy
cs.bham.ac.uk as much as I have.

http://cs.bham.ac.uk

Computing in CS

• Most CS departments are Unix shops: servers,
desktops, even laptops are running various
incarnations of the Unix operating system

• Windows is notable by its absence

• There is a lot of OSX, sorry, MacOS around,

however.

How many of you have
used…?

• Computers at all (don’t laugh: until recently there
would usually be a few)?

• Windows machines?

• Something other than Windows?

• OSX?

• iOS?

• Android?

• Linux?

These are all Unix-derived

So why Unix?
• Long, ancient history, far longer than Windows

• Arose from legacy of Multics, started in the mid-1960s

and running through until the turn of the century

• Ran on expensive, complex hardware

• Tried to do everything

• Unix (originally Unics) started in about 1970 as attempt
to do one thing better, running on more readily available
hardware

• Always intended for programmers and researchers: early
release called PWB, for Programmers’ Workbench.

So why Unix?
• Offered a good environment for programming, both

in terms of the services and in terms of the tools

• Readily available on a range of hardware, with source

code so you could study and change it if you were a
university

• Product of the strange legal position of AT&T/Bell

in the 1970s.

• Became de facto standard, in various forms, for both

CS timeshare machines and (later) “workstations” of
various sorts from Sun, SGI, HP, DEC and the rest.

Unix philosophy

• Small tools that do one thing well

• Easy ways to string those tools together to do

larger, more complex jobs (mostly “pipelines”, one
command reading the output of another)

• Minimal, general interfaces

• Files as streams of bytes

Other Approaches
• If you are editing a document “in” (and the preposition is

telling) Microsoft Word, you can do nothing with it that Word
cannot itself do.

• If you would like to write a program to analyse or change your
document, you cannot, because the format of the file in which
Word stores the document is private to Word, and very
complex.

• Unix offers small, flexible tools you can use on anything;
Windows offers large, special purpose tools that do one job
but offer little extensibility.

• Yes there are scripting languages in some tools: the

general point remains.

Structure of Unix
• A kernel which looks after the hardware and

provides a set of services to access the hardware,
protect programs from each other, allow programs
to communicate, and do things common to all
programs

• A set of libraries that make writing programs easier
(why write your own square root routine, or your
own routine to sort things into order?)

• A set of utilities which are small programs to do
useful jobs.

Unix v Linux
• Up until the mid-1980s, either you had a source

license (required money and/or being academic)
and could tinker to your heart’s content, or you
didn’t, and had to take what a reseller gave you.

• “Commercial” Unix was often not as good as
“academic” Unix.

• And you couldn’t change it

• And if it broke, you couldn’t fix it.

Along comes RMS
• Richard Stallman is not a Unix guy: he comes from another

strand of operating system development at MIT.

• He is the original author of Emacs, a favourite text editor

amongt developers

• He is a fervent believer in free (as in “free speech”, French

“libre”, rather than “gratuit”) software. Everyone should
have source code, so they can modify and develop it further.

• Unix wasn’t his favourite, but was not too objectionable.

• He set about writing the whole operating system, a Unix

clone with enhancements, starting in September 1983. He
called it GNU (“Gnu’s not Unix”), cf. Eine and Zwei.

GNU
• The GNU Project produced an implementation of Emacs,

a very good C compiler, clones of the main Unix tools
and a suite of libraries that replicated most of the Unix
functionality. Collectively, this is all called a “userland”.
By the end of the 80s, they had almost the complete set.

• They did not, however, produce a working kernel. They
became side-tracked into a very complex, very high-
tech, very modern project (“HURD: the hurd of Unix
replacement daemons”) which used a lot of then-
fashionable techniques. It stalled, and is still stalled
more than 25 years later.

GNU
• So you ended up running large parts of the GNU

Userland (which was more modern and better
suited to modern hardware, as well as having some
nice extensions) on top of the commercial kernels
(usually Sun Microsystems’ “SunOS”) or the more
academic “BSD”.

• And some of the commercial Unixes actually
started to use the GNU tools as part of their
offering (gcc, particularly).

Along comes Linus
• Linus Torvalds was at that point a Finnish computer science

undergraduate who wanted to learn about operating systems. He saw
that GNU had a complete-ish userland, and wanted to complete the
project. He set about writing a Unix kernel for the then-new Intel
80386 processor.

• The kernel he wrote, Linux, was not modern, not high-tech, not
fashionable: it used very basic techniques and had a wide range of
performance and stability issues. It famously provoked the ire of Andy
Tannenbaum, a high-profile researcher, who said Linux would get a
failing grade on his course if he’d submitted it. Unix greybeards were
similarly dismissive.

• It did, however, work, and it was available (September 1991), so
people could get on with improving it. And improve it they did, often
with the help of those self-same greybeards.

So…
• Although there were, and are, commercial Unixes

of high quality (notably Sun/Oracle’s Solaris, IBM’s
AIX and Apple’s OSX/MacOS), Linux dominates
academia and much of industry.

• Free (unless you want support)

• Portable (unless you want support)

• Easy to modify (unless you want support)

• Runs on everything from Raspberry Pis to IBM Z

Series mainframes.

Linux is used…
• For the server side of most big websites (Google,

Facebook, Twitter, Amazon…)

• As Android (which is basically Linux)

• As the basis of many routers and other embedded

systems (including my TV)

• RMS insists it should be called GNU/Linux, to

reflect that a lot of the userland comes from GNU.

• RMS is fighting a losing battle on this.

Linux is used…

• As the obvious “changeable” operating system for
research and development in academia

• As the nicest platform for doing software
development work

• As the easiest platform to manage at scale

• Docker, Xen, Containers: big, exciting new

technologies come out of either Linux or Solaris.

Machines are cheap!

• You can install it on your laptop as the main
operating system (for the brave), as a dual boot (I
don’t like this), or using virtualisation (the best
solution).

• There are also small, cheap machines available for
£25. The ubiquitous Raspberry Pi.

Small and Cheap

What CS does badly

• Tell people why Unix is our choice

• Teach much about it as an end in itself

• Explain principles and general ideas, rather than

giving you explicit things about individual exercises

• Give you any clue as to why so many of the

commands have funny names

So here’s a simple Unix
command

• Create a file, and then count how many lines there
are in it

•
ians-macbook-air:~ igb$ cat > somefile
this is line one
this is line two
here is another line
ians-macbook-air:~ igb$ wc -l somefile
 3 somefile
ians-macbook-air:~ igb$

stdin/stdout/stderr

ProgramStandard Input Standard Output

Standard Error

A Pipeline

ProgramStandard Input

Standard Error

ProgramStandard Input

Standard Error

Those funny characters
• > (greater than) means “send the standard output

from this program to this file”

• < (less than) means “take standard input from this

file”

• | (pipe, often shift-backslash but you might need to

go hunting) means “send the output of the
command to the left to the input of the command
to the right”

Typing commands

• “tab” will try to complete filenames, so far as is
possible

• “up-arrow” will bring back the previous command,
which you can then edit with the cursor keys.

• If you want to be cool, read up on “C Shell

History Mechanism” for another way to do this

Some useful commands
• cat: conCATenate some files and send them to standard output, or

failing that copy standard input to standard output

• grep: “show me the lines that match this pattern”

• Stands for “global regular expression print”: regexps are for
another day

• wc: “word [and lines, and characters] count”

• Stands for “word count”

• sort: show me the input, sorted in various ways

• ls: (that’s L, ell): list the files in a directory

• cut: pick sections of out of lines

• tr: transliterate characters (make all “a” into “A”, etc)

Structure of commands
• Usually [name] [options] [perhaps an operand] [files]

• Options, aka switches, alter the behaviour of the

command in some way

• So for example “grep this file1 file2” will print

all the lines containing “this” in file1 and file2.

• “grep -v this file1 file2” will print all the lines

that don’t contain “this” in file1 and file2. inVert.

• “grep -i -c -v this file1 file2” will count

the number of lines that don’t contain “this”, “This”,
“THIS”, etc. Ignore case, Count, inVert.

Trivial Example
ians-macbook-air:testcase igb$ cat > file1
line containing this
line not containing the word
line containing THIS
ians-macbook-air:testcase igb$ cat > file2
line with this in it
some other line
ians-macbook-air:testcase igb$ grep this file1 file2
file1:line containing this
file2:line with this in it
ians-macbook-air:testcase igb$ grep -v this file1 file2
file1:line not containing the word
file1:line containing THIS
file2:some other line
ians-macbook-air:testcase igb$ grep -i -c -v this file1 file2
file1:1
file2:1
ians-macbook-air:testcase igb$

Type Control+D to finish input

Prompt What I type in bold

Getting help
• The confusingly named “man” command (which

stands for “manual”) will show you the manual
pages entry for a particular command.

• The options -h, —help (that’s two dashes) or -? will
sometimes, but not always, get you a summary of a
command’s options.

• All of this pre-supposes you know which command
you want to use, which is where experience and
teaching comes in.

Files

File /home/sue/Asg01/asg01.c

Directory (“folder”)

/home

File /usr/local/bin/gcc

Note for Windows users
• On a running Unix machine, there is a single hierarchy of

files, always starting at root (/), which is usually, but not
always, the disk the machine booted from. Other
devices slot into that hierarchy (via “mounting”).

• There is no equivalent of drive letters: any point in the
hierarchy can be the root of some device that has been
connected to the machine, or a filesystem mounted over
the network.

• USB sticks end up in /media, or /Volumes, or /usb,
depending on the precise variant you are using.

• There is exactly and precisely one directory called “/“.

Working with directories
• cd: Change to a particular directory and make it the

one you are now working in. On login you are in
your “home directory” (/home/igb, /Users/igb) and
“cd” on its own takes you back there.

• pwd: print the current directory

• mkdir: make a new directory

• rmdir: remove a directory

• Vowels are in short supply, you know :-)

Wild Cards
• * (star) means “all the files in this directory”

• *.java (star dot java) means “all the files in this

directory whose names end in dot java”

• By convention, as on most operating systems, the

bit after the last dot indicates the type of the file,
in this case the source code for Java programs

• 2016*/*.mp4 means “all the files whose names
end in dot mp4, contained within directories whose
names start with 2016, in this directory”.

Good Filenames
• You can have files and directories with names that contain any

character you want other than slash “/“ (and, for real
completeness one other character, NUL, that you cannot type).

• But if you have files with names containing anything other than
letters, numbers, dots, dashes and underscores your Unix life
will become more interesting than you need it to be.

• Most punctuation means something special to something

• Spaces separate filenames, so my program.java will

often read as two files, my and program.java.

• my_program.java and MyProgram.java are the usual

alternatives.

The Editor Wars
• I suggested yesterday that we needed a laser

deterrent system in the building which destroys
anyone who starts this discussion.

• Editors are programs which you use, like perhaps
Notepad or Textedit, to create files of text (ie,
program files).

• They are the subject of intense emotional
attachment.

Emacs, vi and ed
• The two main choices are Emacs (now always GNU

Emacs), and vi (now usually in the form of the clone,
vim: even MacOS now ships vim in place of vi).

• Both have their fans, who will never agree.

• And for the real hard-core, there is the line editor, ed.

• Pains me to say it, but learning vi probably more

useful: always there on any remotely modern
machine.

• There are other choices. Ask a young person.

Emacs

You can pretend it’s 1972
ians-macbook-air:~ igb$ ed
i
#include <stdio.h>
int main (void) { printf ("hello world\n"); }
.
2
int main (void) { printf ("hello world\n"); }
s/hello/Hello
int main (void) { printf ("Hello world\n"); }
s/world/World
int main (void) { printf ("Hello World\n"); }
s/void/int argc, char **argv
int main (int argc, char **argv) { printf ("Hello World\n"); }
1,$p
#include <stdio.h>
int main (int argc, char **argv) { printf ("Hello World\n"); }
w
?
w program.c
82
q
ians-macbook-air:~ igb$ cc -o program program.c
ians-macbook-air:~ igb$./program
Hello World
ians-macbook-air:~ igb$

A real job
• So I thought I would walk you through a real task I

carried out last week using Unix command line tools.

• Bruce Springsteen now sells complete recordings of all

his concerts, and as he plays wildly different sets each
night, you end up with quite a few of them. You get a
directory full of files, one per song.

• He recently played three nights in New Jersey, with very
different set lists. I wanted to know a few stats about
what was played and how many times. Yes, I could have
looked at setlists.fm.

• Unix lets me do this from the command line.

Why is this worthwhile?
• The process of breaking a problem down into

steps, each simple enough express in one
statement or command, and then combining those
simple pieces into larger structures, is what
programming is.

• Unix blurs the distinction between commands and
programming languages, so while typing
commands you are actually programming.

• The Unix style is good for programmers, because it
mirrors the way programs are written.

So…
• Looking at my home music server, we

find:
root@volumio:~/USB/Bruce Springsteen & The E Street Band# ls -l
total 28
drwxr-xr-x 2 501 staff 4096 Jul 21 23:58 1988-04-23 Los Angeles, CA
drwxr-xr-x 2 root root 4096 Jul 22 00:07 2013-07-11 Rome, IT
drwxr-xr-x 2 501 staff 4096 Jul 22 00:03 2016-04-25 Brooklyn, NY
drwxr-xr-x 2 501 staff 4096 Jul 22 07:49 2016-06-03 Coventry, GB
drwxr-xr-x 2 501 staff 4096 Sep 12 22:02 2016-08-23 East Rutherford, NJ
drwxr-xr-x 2 501 staff 4096 Sep 12 22:01 2016-08-25 East Rutherford, NJ
drwxr-xr-x 2 501 staff 4096 Sep 12 22:03 2016-08-30 East Rutherford, NJ
root@volumio:~/USB/Bruce Springsteen & The E Street Band#

For ease of reading, I have made the prompt (“now
type something”) just $, instead of the more

common information about username, machine
name and current directory. $ is old school. Note

the directory name breaches all the rules!

-l: long listing

What got played in NJ?
$ ls "2016-08-23 East Rutherford, NJ"
bs160823d1_01_New_York_City_Serenade.m4a
bs160823d1_02_Wrecking_Ball.m4a
bs160823d1_03_Badlands.m4a
bs160823d1_04_Something_in_the_Night.m4a
bs160823d1_05_The_Ties_That_Bind.m4a
bs160823d1_06_Sherry_Darling.m4a
bs160823d1_07_Spirit_In_The_Night.m4a
bs160823d1_08_Santa_Claus_Is_Coming_To_Town.m4a
bs160823d1_09_Independence_Day.m4a
bs160823d2_01_Hungry_Heart.m4a
bs160823d2_02_Out_in_the_Street.m4a
bs160823d2_03_Growin_Up.m4a

$ ls "2016-08-25 East Rutherford, NJ"
bs160825d1_01_New_York_City_Serenade.m4a
bs160825d1_02_Prove_It_All_Night.m4a
bs160825d1_03_Night.m4a
bs160825d1_04_No_Surrender.m4a
bs160825d1_05_Wrecking_Ball.m4a
bs160825d1_06_Sherry_Darling.m4a
bs160825d1_07_Spirit_In_The_Night.m4a
bs160825d1_08_My_City_of_Ruins.m4a
bs160825d1_09_Waitin_on_a_Sunny_Day.m4a
bs160825d1_10_Darkness_On_The_Edge_Of_Town.m4a
bs160825d2_01_Lost_in_the_Flood.m4a
bs160825d2_02_Hungry_Heart.m4a
bs160825d2_03_Out_in_the_Street.m4a

Wrecking Ball: second song on 23rd

Wrecking Ball: fifth song

on 25th

How many individual songs,
including duplicates?

$ ls 2016-08*NJ/*.m4a | wc -l
102
$

“output all the files whose names end in dot
m4a contained in directories that start with
2016-08 and end with NJ, one per line, then

count the number of lines”

How many distinct songs
got played?

• List all the files as before, but only show me the 47th and
subsequent characters in their names, and then just show
me the first ten so I can check “47” was the right number
(tail would show me the last ten).

$ ls 2016-08*NJ/*.m4a | cut -c 47- | head
New_York_City_Serenade.m4a
Wrecking_Ball.m4a
Badlands.m4a
Something_in_the_Night.m4a
The_Ties_That_Bind.m4a
Sherry_Darling.m4a
Spirit_In_The_Night.m4a
Santa_Claus_Is_Coming_To_Town.m4a
Independence_Day.m4a
Hungry_Heart.m4a
$

Let’s get song titles without
the other information

How did I find 47? Trial and
error

$ ls 2016-08*NJ/*.m4a | cut -c 40- | head -1
3d1_01_New_York_City_Serenade.m4a
$ ls 2016-08*NJ/*.m4a | cut -c 50- | head -1
_York_City_Serenade.m4a
$ ls 2016-08*NJ/*.m4a | cut -c 45- | head -1
1_New_York_City_Serenade.m4a
$ ls 2016-08*NJ/*.m4a | cut -c 47- | head -1
New_York_City_Serenade.m4a
$

This is actually an algorithm called a “binary
chop” that is used for many purposes

Too much

Too little

Try the midpoint

And the middle
of that: just right!

Pro Tip for Experts
• Counting characters is hard work. The alternative is

this, but involves understanding regular expressions

$ ls 2016-08*NJ/*.m4a | sed 's/.*d[1-4]_[0-9][0-9]_//' | head
New_York_City_Serenade.m4a
Wrecking_Ball.m4a
Badlands.m4a
Something_in_the_Night.m4a
The_Ties_That_Bind.m4a
Sherry_Darling.m4a
Spirit_In_The_Night.m4a
Santa_Claus_Is_Coming_To_Town.m4a
Independence_Day.m4a
Hungry_Heart.m4a
$

Now, how many distinct?

$ ls 2016-08*NJ/*.m4a | cut -c 47- | sort -u | wc -l
67
$

Show me the 47th and subsequent character in
each of these filenames, sort them into

alphabetical order, remove the duplicates (-u =
unique) and then count the results: 67

The commands run in parallel if your machine has
more than one processor.

What was played every
night?

• We need another command, “uniq -c”, which replaces
successive identical lines with a count of how many
lines are the same:

$ ls 2016-08*NJ/*.m4a | cut -c 47- | sort | head
4th_of_July_Asbury_Park_Sandy.m4a
American_Skin_41_Shots.m4a
American_Skin_41_Shots.m4a
Atlantic_City.m4a
Backstreets.m4a
Badlands.m4a
Badlands.m4a
Badlands.m4a
Because_the_Night.m4a
Because_the_Night.m4a
$

$ ls 2016-08*NJ/*.m4a | cut -c 47- | sort | uniq -c | head
 1 4th_of_July_Asbury_Park_Sandy.m4a
 2 American_Skin_41_Shots.m4a
 1 Atlantic_City.m4a
 1 Backstreets.m4a
 3 Badlands.m4a
 3 Because_the_Night.m4a
 1 Blinded_by_the_Light.m4a
 1 Bobby_Jean.m4a
 3 Born_to_Run.m4a
 1 Brilliant_Disguise.m4a
$

So…
• We now need to pull out all the lines which have “3” in

the first column.

• Unix has many “tiny programming languages”, which are

rarely used in full, but everyone carries around little
snippets.

• The oldest of those is a language called “awk” (yes, we
know the birds are spelled “auk”), for its authors, Aho,
Weinberg and Kernighan.

• If you find yourself writing multi-line awk programmes,
it’s time you learned python or perl, but for this purpose,
awk is fine…

The bit of awk everyone
knows

$ ls 2016-08*NJ/*.m4a | cut -c 47- | sort | uniq -c | awk '$1==3'
 3 Badlands.m4a
 3 Because_the_Night.m4a
 3 Born_to_Run.m4a
 3 Dancing_in_the_Dark.m4a
 3 Hungry_Heart.m4a
 3 Jersey_Girl.m4a
 3 New_York_City_Serenade.m4a
 3 Out_in_the_Street.m4a
 3 Rosalita_Come_Out_Tonight.m4a
 3 Shout.m4a
 3 Spirit_In_The_Night.m4a
 3 Tenth_Avenue_FreezeOut.m4a
 3 The_Rising.m4a
$

$1==3: print all the lines whose first word is 3

In fact, this is wrong
• It turns out that whoever put these packages

together got sloppy over case, and there is a
discrepancy.

• We can find this with the “tr” command, which
converts all the characters in its first argument into
the matching character in its second argument

$ tr 'abc' 'def'
I am being careful
I dm eeing fdreful
$

Different answer if we ignore
case

$ ls 2016-08*NJ/*.m4a | cut -c 47- | tr 'A-Z' 'a-z' | sort -u | wc -l
66
$ ls 2016-08*NJ/*.m4a | cut -c 47- | sort -u | wc -l
67
$

$ ls 2016-08*NJ/*.m4a | cut -c 47- | grep -i Jack
Jack_Of_All_Trades.m4a
Jack_of_All_Trades.m4a
$

Turns out Of and of were used

Downcase all capitals

Note, by the way, that there are huge
variations in versions of tr. “man tr” is your

friend on the system you are using

$ ls 2016-08*NJ/*.m4a | cut -c 47- | tr 'A-Z' 'a-z' | head -5
new_york_city_serenade.m4a
wrecking_ball.m4a
badlands.m4a
something_in_the_night.m4a
the_ties_that_bind.m4a
$

How did I Find This?
• Honestly, by eye: I just noticed it when looking at the “2”

section.

• Sort also has the option “-f” to “fold” case for the purposes

of comparison.The command “diff -c” (“context difference”)
will show you the difference between two files in a readable
format $ ls 2016-08*NJ/*.m4a | cut -c 47- | sort -f -u > /tmp/ignorecase

$ ls 2016-08*NJ/*.m4a | cut -c 47- | sort -u > /tmp/withcase
$ diff -c /tmp/ignorecase /tmp/withcase
*** /tmp/ignorecase 2016-09-22 16:18:49.697449402 +0100
--- /tmp/withcase 2016-09-22 16:18:57.037358535 +0100

*** 25,30 ****
--- 25,31 ----
 Incident_on_57th_Street.m4a
 Independence_Day.m4a
 Its_Hard_To_Be_A_Saint_In_The_City.m4a
+ Jack_of_All_Trades.m4a
 Jack_Of_All_Trades.m4a
 Jersey_Girl.m4a
 Jungleland.m4a
$

Lines
marked +

have
been

added

Unix is great
• Note I didn’t have to write programs, put commands in

files, or anything tedious like that.

• I just typed commands, and the right thing happened.

I could build them up in steps, and see the output for
each intermediate point.

• You aren’t expected to be able to do this immediately

• I have, rather depressingly, 34 years of daily Unix

experience

• But I hope you start to see why Unix is a nice

environment for computer scientists to work in.

